震撼世界!“再造一个中国”, 贝加尔湖水将由俄罗斯流向中国!

2023-05-10 14:56:27

世界权威估算,当今世界紧俏商品石油最大储量并不是沙特油王而是俄罗斯。另外一个不争的事实,握有世界水瓶贝加尔湖的俄罗斯同样是世界上最大的淡水储量国家。

然而令人遗憾的是:由554条河溪汇集而成的贝加尔湖淡水资源却因承载过剩而白白地通过伊尔库茨克境内的安加拉河和叶尼塞河流进了北冰洋。目前,占有世界22%的贝加尔湖淡水资源令世界各国羡慕不已,而这么宝贵的人类赖以生存资源则通过安加拉泄洪河流淌到北冰洋更令人感到痛心不已。

据有关资料显示:俄罗斯仅贝加尔湖淡水储量就已经达到2.36万亿立方米,这个占有世界22%的巨无霸淡水湖,其总占地面积达到3.15万平方公里,最深水处达到1830米,相当于中国第五大淡水湖满洲里呼伦湖水深8米的200多倍。

南水北调只能缓解华北及黄河干流的缺水状况,并不能从跟本上解决华北西北的环境恶劣的问题。从南边调来的水,由于受经流量限制,只能先满足京、津、唐大城市亟需,还不能满足北方广大干旱地区的大用水需求。

中国北方环境的主要问题是北冰洋太平洋印度洋的暖湿气流均很难到达,导致缺水。尤其是塔里木盆地北西南三面环绕着高耸达4000-6000米以的天山帕米尔高原及青藏高原北缘的昆仑山。这很不利于水汽的进入,但却有利于引水开发后水资源的保持,较少的引水量经多年积累就会将盆地变为水乡泽国。可能有一少部水分经大气向东南流失也会改变青甘陕宁干燥的气候。

俄罗斯贝加尔湖,总面积3.15万平方公里,平均水深730米,最大深度为1620米。蓄水量2.3万立方公里。南北长600多公里,东西宽25~80公里。共有554条河流注入该湖,而湖水只由一条安加拉河泄出。知道2.3万立方公里是什么数字吗?这相当于地球地表淡水总量的五分之一!

全国所有淡水湖的总蓄水量加起来也就200多立方公里,相当于贝加尔湖的百分之一,我国最大的河流长江年径流量约1万亿立方米,10亿立方米才1立方公里,换算下来也就1000立方公里,不到贝加尔湖的1/20,也就是说,一个贝加尔湖相当于20条长江一年时间流到一个湖里的全部水量!

我国的南方还好,北方却是严重缺水,北方最大的河流黄河年年哭泣,其年径流量又只有长江的1/20!黄河之外,我国辽阔的北方(东北暂且不谈)便只有无垠的沙漠,戈壁,以及目益退化的草原,河流湖泊是那么的短、小、少,有的还是咸的,雪山融水?我算过,中国所有雪山融水加起来也就一条黄河,而且是那么地难以利用,还不能破坏生态平衡。水!水!水!华北缺水,西北缺水,中国大地缺水!

假如俄罗斯像卖油一样把湖水卖给蒙古和中国,从贝加尔湖至北京只有2000多公里,这比从俄罗斯安加尔斯克至中国大庆2400公里石油管道近得多。”如果再和京杭大运河接通,这该形成一副多么壮丽的图景!确定一个合理的取水标准,建立一系列输水管道,向南流经广阔平坦的蒙古高原(地势上是北高南低,又存在有利条件),有可能的话还可以向西,如此种种,不仅可能就地解决蒙古大沙漠的治理用水问题,使内外蒙古的草原得到根本性维护,甚至还可以南下华北,彻底解决晋冀陕京津的缺水问题,有可能的话,西下新疆,让准噶尔,塔里木彻底变成绿洲。 新疆就会变成中国的粮仓,中国北方草原,耕地大幅度增加,中国再多养活几亿人不成问题。整个西北水问题一旦解决,就会形成城市,就会有工业,几百万平方公里以前是荒漠的大西北就会成为富裕之地,犹如再造一个中国!中国的综合国力就会出现大飞跃。

笔者曾到新疆克拉玛依考察过一条近500公里的“小运河”,那就是一条“北水南调”的成功案例。把阿尔泰山的雪水引到克拉玛依,解决了油区用水之急,也使市区周围披上了绿装,我到那里时,林木成片,瓜蔬飘香,让人感叹石油人和兵团人经天纬地的气概!淡水是人类生存命脉。

点击下列标题,您可以阅读更多精彩文章:

1.:我与一位家喻户晓女星的情史....

2.女高官揭秘:只要大腿张得开,保证升官升得快!

3.美女公务员曝光,尺度之大,令人咋舌!

打赏 



摘在生态毒理学受试生物研究上,国内外已经开发了多种受试生物品种,如斑马鱼,大型溞,浮萍,虹鳟,牡蛎,稀有鮈鲫和青鳉等[135-141],但是关于淡水双壳类底栖生物的报道很少,河蚬作为中国本土的底栖物种,分布广,敏感性强,易取样,能直接反映水污染现状。 本研究通过Illumina测序技术获取河蚬miRNAs信息,为研究miRNA在环境毒理学上的应用提供了基础。利用RACE技术,克隆典型河蚬肠促胰酶肽(Cholecystokinin),Conopressin神经肽和FF神经肽基因,并进一步选取了具有神经毒性的污染物有机磷酸酯,筛查敏感的神经肽标志物,为神经肽的毒理学研究与应用提供了科学依据。使用转录组测序技术评估TDCPP和TBP对河蚬内脏团的毒理机制,为我国对TDCPP和TBP的风险评估提供依据。本论文的技术路线如图1-1。 图1-1 本论文的技术路线  第二章 基于Solexa技术的河蚬保守和新microRNA的鉴定与特征分析 2.1 引言 河蚬作为我国本土淡水贝类是生态毒理学研究的优势物种,陈辉辉等[142]通过转录制测序发现了一些环境标志物基因,如cyp30, hsp70, GABARAP, TPX1, 和SOD。但是目前还没有河蚬环境相关miRNAs的报道。 因此在本研究中,我们使用Solexa测序技术鉴定了河蚬中的miRNAs。此外还使用荧光定量PCR测定了特定miRNA转录本在不同组织中的表达情况,两种法则被用来预测miRNAs的潜在目标,本研究提供了河蚬miRNAs数据,为以后研究河蚬miRNAs的生物学功能和进化提供了技术。 2.2 材料和方法 2.2.1 河蚬的养殖 河蚬取自洪泽湖,养殖方法见附录1 2.2.2 miRNA的提取与测序 首先使用天根miRcute miRNA提取分离试剂盒对河蚬miRNA进行提取,然后在3’和5’接头加上测序序列,接着进行反转,建库,PCR扩增,使用聚丙烯酰胺凝胶分离纯化145-160nt的小RNA,加接头,最后上机测序。提取与测序流程如图2-1。 图2-1 miRNA库建立与测序 2.2.3 miRNA测序数据生物信息学分析 由Solexa测序产生的单个序列通过FASTX工具进行数据过滤,评估序列质量去除低质量序列和3’接头,5’接头和多A序列,计算小RNA长度分布[143, 144]。余下的干净序列使用blast搜索比对到牡蛎基因组上[145]。接着使用BLASTN将有意义的匹配序列比对到Rfam数据库[17]注释rRNA,tRNA,snRNA和其他ncRNA序列。剩下的小RNA比对到miRBase 21中的后生动物成熟miRNAs库。一样或与参考的成熟miRNAs相关的序列被认为是保守miRNAs。没有匹配到任何数据库的序列被比对到牡蛎基因组用来预测新miRNAs。与牡蛎基因组没有任何差别的序列通过MIPEAP折叠来确定为潜在的新miRNAs。使用了如下法则来确定新miRNAs:碱基的数量为18到24,自由能≤-20 kcal/mol,并且miRNA从一个前体端产生。Solexa测序在牡蛎比对中形成miRNA: miRNA*对被认为是miRNA*。 2.2.4 miRNA的鉴定与表达分析 为了鉴定深度测序获取的miRNAs,我们随机选取了8个保守的和4个新的miRNAs,以5S rRNA为内参使用荧光定量PCR分析了他们在四个组织中的表达情况,总RNA使用miRcute miRNA First-strand cDNA Synthesis Kit (TianGen, China)试剂盒来提取,定量液使用miRcute miRNA qPCR Detection Kit (SYBR Green; TianGen, China),定量仪使用Applied Biosystems 7500 Real-Time PCR System (Life Technology, USA),定量引物使用miRprimer软件[146]设计,见表2-1。 表2-1 河蚬miRNA定量使用的引物 miRNA forward primer(5’→ 3’) reverse primer(5’→ 3’) 5s rRNA aagttaagcaacgtcgagccc ttagcccagttgttaccagca cf-miR-1985 cagtgccatttttatcagtcac ggtccagtttttttttttttttacag cf-miR-12 cgcagtgagtattacatcaggt ggtccagtttttttttttttttcagt cf-miR-216a cgcagtaatctcagctggt ggtccagtttttttttttttttcagaa cf-miR-216b cgcagtaatatcagctggt gtccagtttttttttttttttcagga cf-miR-67a gcagacaacctgcttgaatg ggtccagtttttttttttttttcct cf-miR-184 cagtggacggagaactga ccagtttttttttttttttgccctt cf-miR-10 gcagtaccctgtagatccga aggtccagtttttttttttttttacaa cf-novel-14 tggcactggcggaa ggtccagtttttttttttttttgtga cf-novel-2 cagacactgcgatctattgag gtccagtttttttttttttttcttagtc cf-novel-18 tgccctatccgtcagtc gtccagtttttttttttttttgcag cf-novel-31 gagctgcctgatgaagag tccagtttttttttttttttggaca 2.2.5 目的基因预测分析 John等[147]报道过的目的基因预测方法。尽管河蚬基因组和EST序列缺乏,但是有4个环境相关的基因全长(gst-pi, hsp70, cyp4 and metallothionein)可以从ncbi上获得,使用miRanda [148]和RNAhybrid [149]对miRNAs和这四个基因的3’非翻译区作了目标预测。 2.3 结果与分析 2.3.1 miRNA序列分析 我们使用河蚬外套膜,肌肉,消化腺,性腺和鳃的RNA样品建立了一个小RNA库用来获取河蚬的miRNAs信息。过滤掉低质量的和接头序列,清楚污染的和短序列后,我们获得了28,799,934条高质量的reads。这些干净序列然后被映射到牡蛎基因组。得到了代表39813个序列的6194289个高质量reads(表2-2)。去除掉rRNA, tRNA, snoRNA和其他ncRNA序列,剩下的4995304 reads(代表16144个 不同的reads)被用来预测保守的和潜在的新miRNAs(表2-2)。不同类型的小RNAs的数量和比例如表2-2。 尺寸是一个重要的特征用来区分miRNAs和其他小RNA[150]。miRNAs的尺寸一般是18到24bp[151]。本次研究的小RNAs的尺寸分布如图2-1。我们发现绝大多数是22bp,占了总reads数的14.4%。同样地,在斑点叉尾(25.8%)[143]和珍珠贝中(34.48%)[29]也是22bp的最多。 图2-1 高质量reads长度分布 表2-2 河蚬中不同类型小RNAs长度分布 Small RNA Unique RNAs Percent (%) Total RNAs Percent (%) Total 39,813 100 6,194,289 100 rRNA 11,262 28.29 1,048,538 16.93 tRNA 2,124 5.33 22,289 0.36 snoRNA 19 0.05 183 0.00 other 10,264 25.78 127,975 2.07 miRNA 16,144 40.55 4,995,304 80.64 2.3.2 河蚬保守miRNAs确定 为了确定河蚬保守的miRNAs,我们将测序数据比对到在miRBase 21中的后生动物miRNAs库,允许有1到2个错配碱基[152]。总共16144个唯一的序列被比对到数据库。属于35个miRNAs家族的45个保守的miRNAs被鉴定出来(附录4)。此外,这些结果显示有26个保守的miRNAs超过1000测序数。miR-10测得1304866个拷贝数,是最多的,紧接着是miR-184(258355),miR-315(220094)和miR-7(144322)(附录2)。在这些保守的miRNAs中,15个只有低于100个拷贝数。miR-67a和miR-67b只被检测到1次。 2.3.3 河蚬新miRNAs的鉴定 因为河蚬基因组信息未知,所以我们使用牡蛎基因组和河蚬EST数据库用来预测新miRNAs[153]。44个符合规则的小RNAs被认为是潜在的新miRNAs。它们二级结构的自由能从−20.10到−99.00 kcal/mol(附录3)。有28个新miRNAs被检测少于100个拷贝,15个新miRNAs少于10个拷贝。预测的5个表达最高的miRNAs的二级结构如图2-2。               图 2-2 5个表达最高的新miRNAs预测二级结构 2.3.4 河蚬miRNAs的荧光定量 为了检测河蚬潜在miRNAs的组织分布,我们使用荧光定量PCR检测不同miRNAs在不同组织中的表达水平。特别地,4个新的(Novel-2, Novel-14, Novel-18 and Novel-31)和8个保守的(miR-10, miR-12, miR-67a, miR-184, miR-216a, miR-216b, miR-1985 and miR-1992)(图2-3)miRNAs被检测了表达水平。 结果显示9个miRNAs在腹足中表达量最高,然而miR-10和Novel-2在鳃和内脏团中表达量最高。此外,miR-1992在所有组织中表达相似。广泛的表达说明这个miRNAs肯与基础功能有关如代谢[154]。相比较而言,一些miRNAs高度显示了组织特异性。miR-67a和miR-1985在腹足中最高,接着是外套膜,鳃和内脏团。此外,我们发现miR-12主要在腹足中表达,然后依次是内脏团,鳃和外套膜。miR-216b主要在腹足和内脏团中表达而在鳃和外套膜中表达稀少。而且,miR-184和miR-10表达水平在鳃,腹足和外套膜中几乎一样,在内脏团中明显低。而在新miRNAs中,Novel-14和Novel-18在腹足和外套膜中表达丰富,在 鳃和内脏团表达量低。Novel-31在腹足中表达量最高,接着是外套膜和鳃,而在内脏团中非常低。Novel-2在鳃中很少表达,但在腹足外套膜和内脏团中表达高。 图2-3 8个保守和4个新miRNAs在河蚬4个组织中(鳃,腹足,内脏团,外套膜)的表达水平 2.3.5 河蚬miRNAs目的基因的预测 为了了解河蚬保守和新miRNAs的生物学功能,我们使用miRanda和RNAhybrid工具分析miRNAs和环境污染相关mRNA的关系。miRanda是一个基于核苷酸互补配对的miRNA目标基因预测软件,这款软件允许G=U假阳性,这在预测RNA:RNA复合体很关键[155]。可以用于人,老鼠,苍蝇和蠕虫的序列预测[156]。相比较而言,RNAhybrid是一款简单,快速并且灵活的任何物种miRNAs目的基因预测的软件[156]。这个工具能预测miRNA和mRNA的最佳结合位点,能计算杂交结构自由能。 结果显示所以的环境相关基因都有相应的miRNA作用(表2-3),metallothionein基因是miR-7的目标。miR-1992,miR-2b和Novel-40可能与调控 河蚬hsp70有关。我们的结果还显示miR-10和miR-1992可以作用于cyp4的3’非翻译区。然而我们没有发现两个软件对gst-pi基因预测的交集。图4-4显示了使用miRanda和RNAhybrid预测miRNAs和它们的目的基因潜在的交联关系。 图2-4 miRanda和RNAhybrid预测miRNAs和它们的目的基因潜在的关系 表2-3 miRanda和RNAhybrid预测的河蚬miRNAs与gst-pi, hsp70, cyp4和metallothionein的关系 Genes (gene ID) miRanda RNAhybrid Conserved Novel Conserved Novel gst-pi(AY885667.1) miR-315, miR-8a, miR-8b Novel-30, Novel-38 miR-277 Novel-1*, Novel-4 hsp70(KJ461738.1) miR-1992, miR-2a, miR-2b, miR-2c Novel-40 miR-1992, miR-2b, miR-34, Novel-29, Novel-40 cyp4(JQ678818.2) miR-10, miR-1992, miR-315 Novel-30, Novel-15, Novel-23, Novel-36 miR-10, miR-1992, miR-1994, miR-263, miR-285a, miR-285b, miR-34, miR-7 Novel-1*, Novel-14, Novel-17, Novel-29, Novel-3, Novel-4 metallothionein (EF185126.1) miR-1985, miR-315, miR-7, miR-7, miR-981 Novel-20, Novel-29, Novel-31, Novel-6a, Novel-6b, Novel-8 2.4 讨论 我们使用Solex测序技术获取了河蚬miRNAs数据,并进行了分析。发现保守的miRNAs表达比较高。之前的研究表明绝大多数确定的miRNAs的序列和功能在不同物种间是保守的[157]。miR-10在河蚬中是表达量最高达,文献报道它能抑制斑马鱼HoxB1a and HoxB3a基因[158],David Hassel等报道了它还可以通过促进血管内皮生长因子信号转导来调控斑马鱼和人血管内皮细胞的血管原行为[159]。而且在其他几个物种中发现miR-10能与一系列Hox 基因共表达,能调控Hox 转录本的翻译[160]。这些都将为以后研究河蚬miR-10的功能提供基础。Xu等[161]报道了牡蛎中miR-216b主要在消化腺中表达,接下来是鳃和外套膜。Wong等[162]研究发现miR-184的过量表达可能在细胞分化过程中引起舌鳞状细胞癌[162]。组织分布结果表明绝大多数河蚬miRNAs主要在2或3个组织中表达,仅有少数miRNAs在多组织中高度表达。 河蚬新miRNAs的表达量低, 在珍珠贝中53个新miRNAs中只有3个测序数大于100次[29],此外,25个花生新miRNAs中只有5个检测频率大于1000,绝大多数测序数小于100[163]。我们的结果与之前的研究是一致的[164, 165]。新miRNAs的低丰度表达表明了它们在某些组织中或特定发育阶段中发挥作用。 2.5 本章小结 在本研究中,我们使用Solex深度测序总共从河蚬小RNA库获得28799934条高质量序列。鉴定了45条保守的和39条新的河蚬。使用荧光定量PCR验证了8个保守的和4个新的miRNAs,发现它们在4个组织中表达各有差异。此外我们还是用了2种软件预测了miRNAs和4个环境污染相关基因的关系。本研究的结果为深入了解河蚬和其他双壳贝类的miRNA提供了基础。 第三章 河蚬CCK,Conopressin和FFamide神经肽基因cDNA全长克隆 3.1 引言    目前,人,老鼠等脊椎动物的神经肽研究的比较成熟,无脊椎动物神经肽研究主要集中在海蜗牛,牡蛎,章鱼等海洋软体动物,没有淡水双壳类动物的文献报道,神经肽的毒理学研究也很少,开发河蚬典型神经肽标志物,并应用于毒理学研究十分必要。本研究选取了CCK,Conopressin和FFamide神经肽作为研究基因。 本章以转录组测序获取的神经肽片段为参考,运用RACE技术,成功克隆了CCK,Conopressin和FFamide神经肽基因的全长,对全长序列进行了生物信息学分析,使用荧光定量PCR测量了神经肽在河蚬不同组织中的表达分布,并评估了有机磷酸酯对神经肽的影响,筛查了神经肽标志物。 3.2 材料与方法 3.2.1实验材料 3.2.1.1 试剂 TRIzol购自Invitrogen(USA)公司;荧光定量PCR试剂盒、琼脂糖、M-MLV试剂盒、Oligo-(dT) 18、DNase I和dNTP购自Promega(USA)公司;100 bp 和 2000 bp ladder购自天根生物(北京,中国)公司;SMART RACE cDNA amplification kit 购自Clontech(USA)公司;TaKaRa MiniBEST Agarose Gel DNA Extraction Kit, pMD20-T vector 和E.coli JM109 感受态细胞购自TaKaRa(Dalian, China)公司; ,异丙醇和无水乙醇都是国产分析纯。 3.2.1.2实验仪器 Centrifuge 5804R离心机(eppendorf, USA) PowePac Basic电泳仪(BIO-RAD, USA) Gel Doc XR+凝胶成像仪(BIO-RAD, USA) 梯度热循环仪(Veriti thermal cycle system)(Life Technologies,USA) Multiskan GO  酶标仪(Thermo Scientific,USA) 荧光定量 PCR 仪7500 Real-Time PCR system(Life Technologies,USA) 3.2.1.3统计分析与绘图软件 SPSS16.0 软件,Origin8.0软件 3.2.2河蚬的实验室养殖 河蚬购自洪泽湖,在盱眙县老子山镇洪泽湖码头采集,壳长在1-3cm 左右,年龄在1-2龄左右。带回实验室用恒温养殖系统进行驯养。采用流水养殖,建立一套恒温的流水系统进行养殖,选用水泥池流水循环系统养殖河蚬,以水泵提供流水动力,建有过滤池和养殖池,水经过水泵从过滤池传送到养殖池,再流回过滤池进行过滤。池底铺粒径为0.5 mm左右的细沙,所用水为500目纱绢过滤并充分曝气的自来水,室内温度使用空调控制,水温保持在20±1ºC,水质硬度在250mg/L以下, 光照周期为12h:12h,饵料采用实验室纯培养的斜生栅藻和小球藻,或者以高级螺旋藻藻粉作为饵料。河蚬实验室养殖规范见附录1。 3.2.3 RNA 提取和 cDNA 合成 3.2.3.1. RNA 提取操作步骤: 河蚬组织总RNA的提取采用Trizol试剂法,在无菌和无RNA酶的超净工作台进行,具体操作步骤如下: (1)取50-100mg河蚬组织迅速放入预冷的1.5 ml EP管,迅速加入200-300μL冰预冷的Trizol液,然后用电动棒碾磨均匀,接着加入冰预冷的800μL Trizol液,注意样品总体积不能超过所用Trizol 体积的10%,室温放置5min,使其充分裂解。 (2)以每1mlTrizol液加入0.2ml 的比例加入冰预冷的氯仿,盖紧离心管,用手剧烈摇荡离心管15 秒,室温放置3 min,然后放入离心机,4℃,12000转,离心15min,吸取上层水相,尽量不要将沉淀吸入,移至另一1.5mLEP管中。 (3)每管加入500uL冰预冷的异丙醇混匀,室温放置10min。 (4)12000 g,4°C,离心10 min,弃上清,此时RNA沉于管底。 (5)用DEPC处理过的水和无水乙醇配制成75%乙醇,按每ml Trizol 液加入至少1ml 的比例加入75% 冰预冷的乙醇,用手轻轻上下翻转约50次,用移液器反复吸吹悬浮的沉淀。 (6)8000 g,4°C下离心5min,尽量弃上清。 (7)室温瞭干,注意不要干燥过分,然后将RNA 溶于无核酸水中。利用DNA 的紫外分光光度计检测提取的RNA样品纯度和浓度。一般OD260/OD280>1.8时,样品纯度符合要求,其余的RNA于-80℃冻存,进行反转录合成。 3.2.3.2. 去除 RNA 中的 DNA (1)用 RNase-free DNase 去除样品中DNA污染。 DNaseⅠ消化处理反应体系(20μL) RNA 16μL DNaseⅠ 2 μL 10×DNaseⅠ Buffer 2μL Total volume 20 μL (2涡旋混匀后,37°C 水浴 30min。 (3)加入RQ1 DNase Stop Solution 1μL,混匀,瞬时离心,65°C 反应 10min。 (4)RNA浓度采用紫外分光光度计测定A260/A280 大于1.8,其余的RNA于-80℃冻存,进行反转录合成。 3.2.3.3. cDNA 第一链的合成 首先使用Multiskan GO酶标仪对提取并去除DNA污染的总RNA进行定量,使用Promega

江湖少郎
为大家奉上深度有价值的文章
关注

友情链接

Copyright © 2023 All Rights Reserved 版权所有 福建水产设备联盟