福建水产设备联盟

学业水平考试必备基础知识——必修一

亦孔之见 2019-04-09 08:16:41

 

高考虽然已经结束,但是对于高一高二的学生,一场考验也即将来临。本月底,高二的学生将要进行学业水平考试,生物学科对于理科学生一般是没有什么问题的,但是对于很多文科学生还是有些难度的。山东省新的综合改革方案中,高一自今年起也要进行合格考试。这次考试对高一学生的重要性更大。为帮助更多的学生应对这两个重要的考试(高一合格考、高二学考),小编特意整理了教材中的基础知识,陆续推送。希望对大家有帮助。

 必修1分子与细胞

一、组成细胞的元素和化合物

1、无机化合物包括水和无机盐,其中水是含量最高的化合物。有机化合物包括

糖类、脂质、蛋白质和核酸;其中糖类是主要能源物质化学元素组成:C、H、O。蛋白质是干重中含量最高的化合物,是生命活动的主要承担者化学元素组成:C、H、O、N、“S”。核酸是细胞中含量最稳定的,是遗传信息的携带者化学元素组成:C、H、O、N、P

 

2、(1)还原糖的检测和观察的注意事项:①还原糖有葡萄糖,果糖,麦芽糖

②斐林试剂中的甲乙液必须等量混合均匀后再加入样液中,现配现用③必须用水浴加热 颜色变化:浅蓝色        棕色         砖红色沉淀

 

2)脂肪的鉴定 常用材料:花生子叶或向日葵种子 试剂用苏丹Ⅲ或苏丹Ⅳ染液,现象是橘黄色或红色。注意事项:①切片要薄,如厚薄不均就会导致观察时有的地方清晰,有的地方模糊。②酒精的作用是:洗去浮色需使用显微镜观察

3)蛋白质的鉴定 常用材料:鸡蛋清,黄豆组织样液,牛奶 试剂:双缩脲试剂 

注意事项:①先加A1ml,再加B4②鉴定前,留出一部分组织样液,以便对比 

颜色变化:变成紫色

3氨基酸是组成蛋白质的基本单位。每种氨基酸都至少含有一个氨基(-NH2和一个羧基(-COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上。氨基酸的种类由R基(侧链基团)决定

4、蛋白质的功能①构成细胞和生物体结构的重要物质(肌肉毛发)② 催化细胞内的生理生化反应③ 运输载体(血红蛋白)④ 传递信息,调节机体的生命活动(胰岛素、生长激素)⑤免疫功能(抗体)

5、蛋白质分子多样性的原因是构成蛋白质的氨基酸的种类,数目,排列顺序,以及空间结构不同导致蛋白质结构多样性。蛋白质结构多样性导致蛋白质的功能的多样性

           R
6、构成生物体的蛋白质的20种氨基酸的结构通式为:NH2-C-COOH

          H
7
、n个氨基酸脱水缩合形成m条多肽链时,共脱去(nm)个水分子,形成(nm)个肽键,至少存在m-NH2-COOH,形成的蛋白质的分子量为:n×氨基酸的平均分子量-18(n-m)

 

8、核酸分为DNA和RNA,DNA的中文名称是脱氧核糖核酸, RNA的中文名称是核糖核酸核苷酸是核酸的基本组成单位核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成。

9核酸的功能

细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。

甲基绿将细胞核中的DNA染成绿色吡罗红将细胞质中的RNA染成红色DNA主要存在与细胞核中,在线粒体和叶绿体中也有少量的分布。RNA主要存在于细胞质中,少量存在于细胞核中。

 

10、糖类被称为“碳水化合物”,分为单糖、二糖和多糖,是主要的能源物质。常见的单糖有葡萄糖、果糖、半乳糖、核糖和脱氧核糖等。植物细胞中常见的二糖是蔗糖和麦芽糖,动物细胞中常见的二糖是乳糖植物细胞中常见的多糖是纤维素和淀粉,动物细胞中常见的多糖是糖原淀粉是植物细胞中的储能物质,糖原是动物细胞中的储能物质。构成多糖的基本单位是单糖

11、细胞中的脂质主要包含脂肪、磷脂和固醇脂肪是细胞内良好的储能物质磷脂是构成细胞膜的重要成分。固醇包含胆固醇、性激素和维生素D等。

12、细胞中的水包括结合水和自由水,其中结合水是细胞结构的重要组成成分;自由水细胞内良好溶运输养料和废物,许多生化反应有水的参与

13、细胞中大多数无机盐以离子的形式存在,无机盐的作用有4点,①细胞中许多有机物的重要组成成分②维持细胞和生物体的生命活动有重要作用③维持细胞的酸碱平衡④维持细胞的渗透压。

二、细胞的基本结构

1、细胞学说的建立者是施莱登和施旺。意义是揭示了生物体结构的统一性和细胞统一性。

2、细胞膜主要成分:脂质和蛋白质,还有少量糖类。而脂质中磷脂最丰富功能越复杂的细胞膜,蛋白质种类和数量越。所以细胞膜功能有3点,①将细胞与环境分隔开,保证细胞内部环境的相对稳定;②控制物质出入细胞;③进行细胞间信息交流。

3、细胞器根据膜的情况,可以分为双层膜、单层膜和无膜的细胞器。

 

1双层膜细胞器:有叶绿体、线粒体叶绿体存在于绿色植物细胞,是绿色植物进行光合作用的场所,但不能说叶绿体是一切生物体进行光合作用的场所,因为原核细胞蓝藻没有叶绿体,但是它可以进行光合作用。线粒体是有氧呼吸主要场所,同理不能说线粒体是进行有氧呼吸的唯一场所。

2单层膜的细胞器有内质网、高尔基体、液泡和溶酶体等:其中内质网是细胞内蛋白质合成和加工,脂质合成的场所;高尔基体能够对蛋白质进行加工、分类、包装;液泡植物细胞特有,调节细胞内部环境,维持细胞形态,与质壁分离有关;溶酶体:分解衰老、损伤细胞器,吞噬并杀死侵入细胞的病毒或病菌。

3无膜的细胞器有核糖体和中心体核糖体是合成蛋白质的主要场所,也就是翻译的场所;中心体是动物和低等植物细胞所特有,与细胞有丝分裂有关

4、细胞器的分工合作,以分泌蛋白的合成和运输为例来说明问题:

核糖体        内质网       高尔基体         细胞膜

(合成肽链)(加工成蛋白质) (进一步加工)(囊泡与细胞膜融合,蛋白质释放)

5、生物膜系统

的概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统。

生物膜系统

的作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。

6真核生物和原核生物最明显的区别是原核生物没有核膜包被的细胞核,没有染色体,核区中仅有一个环状DNA分子,细胞质中只有核糖体一种细胞器。最常见的原核生物是蓝藻和细菌(大肠杆菌、乳酸菌等),最常见的真核生物是酵母菌、霉菌、绿藻、水绵和所有动植物。[来源:Z*xx*k.Com]

7、细胞是一个统一的整体,细胞只有保持完整性,才能维持各项生命活动的正常进行。

三、细胞的物质输入和输出

1、植物细胞的质壁分离和复原

外界溶液浓度>细胞液浓度,细胞质壁分离;

外界溶液浓度<细胞液浓度,胞质壁分离复原;

外界溶液浓度=细胞液浓度时就,水分进出细胞处于动态平衡。

原生质层细胞膜和液泡膜以及两层膜之间的细胞质。整个原生质层相当于一层半透膜。

质壁分离产生的条件1)具有大液泡(2)具有细胞壁 

质壁分离产生的内因:原生质层伸缩性大于细胞壁伸缩性

质壁分离产生的外因:外界溶液浓度>细胞液浓度

2、细胞膜是一层选择透过性膜水分子可以自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过。

3流动镶嵌模型的基本内容①磷脂双分子层构成了膜的基本支架②蛋白质分子有的镶嵌在磷脂双分子层表面,有的部分或全部嵌入磷脂双分子层中,有的横跨整个磷脂双分子层③磷脂双分子层和大多数蛋白质分子可以运动

 

糖蛋白(糖被)组成:由细胞膜上的蛋白质与糖类结合形成。作用:细胞识别、免疫反应、血型鉴定、保护润滑等。

4、物质跨膜运输的方式包括被动运输和主动运输被动运输又包括自由扩散和协助扩散

物质进出细胞,顺浓度梯度的扩散,称为被动运输

自由扩散:物质通过简单的扩散作用进出细

协助扩散:进出细胞的物质借助载体蛋白的扩散。

主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。

对物质是否吸收以及吸收多少,都是由细胞膜上载体的种类和数量决定。


方向

载体

能量

举例

自由扩散

高→低

不需要

不需要

水、CO2O2N2、乙醇、甘油、苯、脂肪酸、维生素等

协助扩散

高→低

需要

不需要

葡萄糖进入红细胞

主动运输

低→高

需要

需要

氨基酸、K+Na+Ca+等离子、葡萄糖进入小肠上皮细胞

5、生物膜的特点:

1)结构特点:具有一定的流动性;

2)功能特点:选择透过性。

6、大分子物质进出细胞的方式:胞吞和胞吐

四、细胞的能量供应和利用

1、细胞代谢的概念:细胞内每时每刻进行着许多化学反应,统称为细胞代谢。.

2、酶是活细胞产生的一类具有生物催化作用_有机物_酶大多数是蛋白质,少数是RNA

3、特性:酶具有高效酶具有专一性:每一种酶只能催化一种或一类化合物的化学反应;酶的催化作用需要适宜的条件过酸、过碱和高温都能使酶的分子结构遭到破坏而失去活性。低温抑制酶的活性,在适宜温度下酶活性可以恢复

4ATP的中文名称是三磷酸腺苷,它是生物体新陈代谢的直接能源糖类是细胞的能源物质脂肪是生物体的储能物质

5ATP普遍存在于活细胞中,分子简式写成APPP,其中A代表腺苷P代表磷酸基团,—代表一般的共价键~代表高能磷酸键ATP在活细胞中的含量很少,但是ATP在细胞内的转化十分迅速的。细胞内ATP的含量总是处动态平衡中,这对于生物体的生命活动具有重要意义。


 

酶酶

 

             


ADPPi+能量ATP       不可逆的:

(1)当反应向右进行时,对高等动物来说,能量来自呼吸作用,主要场所是线粒体;对植物来说,能量来自呼吸作用和光合作用。场所分别是线粒体和叶绿体

(2)当反应向左进行时,能量来自与高能磷酸键的断裂,能量用于维持各项生命活动。

 


6、有氧呼吸


 

 

总反应式C6H12O6+6H2O +6O2         6CO2 +12H2O+能量


 


 

 

第一阶段:细胞质基质   C6H12O6      2丙酮酸+少量[H]+少量能量



 

 

第二阶段:线粒体       2丙酮酸+6H2O       6CO2+大量[H] +少量能量



 

 

第三阶段:线粒体   24[H]+6O2            12H2O+大量能量


无氧呼吸

产生酒精:C6H12O6         2C2H5OH+2CO2+少量能量

无氧呼吸

产生乳酸C6H12O6           2乳酸+少量能量

发生生物:动物,乳酸菌

有氧呼吸的能量去路:有氧呼吸所释放的能量一部分用于生成ATP,大部分以热能形式散失了。无氧呼吸:能量小部分用于生成ATP,大部分储存于乳酸或酒精中。

注意:有氧呼吸二氧化碳在第二阶段产生,氧气在第三阶段被消耗,与[H]反应生成水。

7、能量之源——光与光合作用

                                    叶绿素a(蓝绿色)

                        叶绿素      叶绿素b (黄绿色)

绿叶中的色素                      胡萝卜素 (橙黄色)

类胡萝卜素

              叶黄素   (黄色)

叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。白光下光合作用最强其次是红光和蓝紫光,绿光下最弱。

实验——绿叶中色素的提取和分离

实验原理:提取的原理:绿叶中的色素能溶解在有机溶剂无水乙醇中。分离原理:绿叶中的色素都能溶解在层析液中,且他们在层析液中的溶解度不同,溶解度高的随层析液在滤纸上扩散得快,绿叶中的色素随着层析液在滤纸上的扩散而分离开。

捕获光能的结构——叶绿体。光合作用色素分布于类囊体薄膜上。

8、光合作用的过程:

 光能

总反应式CO2+H2O         CH2O+O2  其中,CH2O)表示糖类等有机物

                   叶绿体

根据是否需要光能,可将其分为光反应暗反应两个阶段。

光反应阶段必须有光才能进行 场所类囊体薄膜上,包括水的光解和ATP形成

能量变化:光能转化为ATP中活跃的化学能

暗反应阶段:有光无光都能进行,场所:叶绿体基质,包括CO2的固定和C3的还原。

能量变化:ATP中活跃的化学能转化为(CH2O)中稳定的化学能。

光反应和暗反应的联系反应为暗反应提供ATP[H],暗反应为光反应提供合成ATP的原料ADPPi

注意:光合作用中氧气的产生在光反应阶段,由水光解产生,二氧化碳的消耗发生在暗反应阶段,参与碳的固定过程。

9、影响光合作用的因素及在生产实践中的应用:

1光合作用的影响叶绿体中色素的吸收光波主要在红光和蓝紫光。植物的光合作用强度在一定范围内随着光照强度的增加而增加,但光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增加③光照时间长,光合作用时间长,有利于植物的生长发育。

2温度对光合作用的影响——影响的活性。温度低,光合速率低。随着温度升高,光合速率加快,温度过高时会影响酶的活性,光合速率降低。生产上白天升温,增强光合作用,晚上降低室温,抑制呼吸作用,以积累有机物。

3CO2浓度对光合作用的影响。在一定范围内,植物光合作用强度随着CO2浓度的增加而增加,但达到一定浓度后,光合作用强度不再增加。生产上使田间通风良好,供应充足的CO2

 

4水分对光合作用的影响。

当植物叶片缺水时,气孔会关闭,减少水分的散失,同时影响CO2进入叶内,暗反应受阻,光合作用下降。生产上应适时灌溉,保证植物生长所需要的水分。

五、细胞的生命历程

1限制细胞长大的原因包括细胞表面积与体积的比和细胞的核质比

细胞增殖的意义生物体生长、发育、繁殖和遗传的基础真核细胞分裂的方式包括有丝分裂、无丝分裂、减数分裂

细胞周期的概念:指连续分裂的细胞,从一次分裂完成时开始到下一次分裂完成时为止细胞周期分分裂间期和分裂期两个阶段。分裂间期所占时间长。分裂期:可以分为前期、中期、后期、末期。

植物细胞有丝分裂各期的主要特点:

1.分裂间期特点完成DNA的复制和有关蛋白质的合成结果是每个染色体都形成两个姐妹染色单体,呈染色质形态。[

2.前期特点①出现染色体、出现纺锤体②核膜、核仁消失。前期染色体特点:①染色体散乱地分布在细胞中心附近。②每个染色体都有两条姐妹染色单体

3.中期特点:①所有染色体的着丝点都排列在赤道板 ②染色体的形态和数目最清晰。染色体特点:染色体的形态比较固定,数目比较清晰。故中期是进行染色体观察及计数的最佳时机。

4.后期特点:①着丝点一分为二,姐妹染色单体分开,成为两条子染色体。并分别向两极移动。②纺锤丝牵引着子染色体分别向细胞的两极移动。这时细胞核内的全部染色体就平均分配到了细胞两极。染色体特点:染色单体消失,染色体数目加倍。

5.末期特点:①染色体变成染色质,纺锤体消失。②核膜、核仁重现。③在赤道板位置出现细胞板,并扩展成分隔两个子细胞的细胞壁,与高尔基体的活动有关。

6、动植物细胞有丝分裂的区别:一、前期纺锤体的形成不同;二、末期子细胞的形成方式不同。

7、实验:观察植物细胞的有丝分裂  原理:染色体容易被碱性染料染成深色。

操作步骤:解离——漂洗——染色——制片

结果:在视野中能观察到正方形,排列紧密的分生区细胞,绝大多数的细胞处在间期

有丝分裂的意义将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去。从而保持生物的亲代和子代之间的遗传性状的稳定性。

无丝分裂特点:在分裂过程中没有出现纺锤丝和染色体的变化

㈣细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生的稳定性差异的过程,叫做细胞分化。

1、细胞分化发生时期:是一种持久性变化,它发生在生物体的整个生命活动进程中,胚胎时期达到最大限度。

2、细胞分化的特性稳定性、持久性、不可逆性、全能性

3意义:经过细胞分化,在多细胞生物体内就会形成各种不同的细胞和组织;多细胞生物体是由一个受精卵通过细胞增殖和分化发育而成,如果仅有细胞增殖,没有细胞分化,生物体是不能正常生长发育的。

细胞的全能性是指已经分化的细胞,仍然具有发育成完整个体的潜能从理论上讲,生物体的每一个活细胞都应该具有全能性。在生物体内,细胞并没有表现出全能性,而是分化成为不同的细胞、器官,这是基因在特定的时间、空间条件下选择性表达的结果,当植物细胞脱离了原来所在植物体的器官或组织而处于离体状态时,在一定的营养物质、激素和其他外界的作用条件下,就可能表现出全能性,发育成完整的植株。[来源

细胞衰老的主要特征:水分减少,细胞萎缩,体积变小,代谢减慢;有些酶活性降低(细胞中酪氨酸酶活性降低会导致头发变白);色素积累(如:老年斑);呼吸减慢,细胞核增大,染色质固缩,染色加深;细胞膜通透功能改变,物质运输能力降低。

癌细胞的特征:能够无限增殖;形态结构发生了变化;癌细胞表面糖蛋白减少

致癌因子有物理致癌因子;化学致癌因子;病毒致癌因子

细胞癌变的机理是由于原癌基因被激活,细胞发生转化引起的。